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Figure 1: (a) Intersection for vehicle-to-everything (V2X) communication. (b) RGB images from four vehicles passing through the same intersection. (c)
Bird’s eye view (BEV) point cloud from vehicles and roadside infrastructure (each color represents an entity).

Abstract

Vehicle-to-everything (V2X), which denotes the collabo-
ration between a vehicle and any entity in its surrounding,
can fundamentally improve the perception in self-driving
systems. As the individual perception rapidly advances, col-
laborative perception has made little progress due to the
shortage of public V2X datasets. In this work, we present
the V2X-Sim dataset, the first public large-scale collab-
orative perception dataset in autonomous driving. V2X-
Sim provides: 1) well-synchronized recordings from road-
side infrastructure and multiple vehicles at the intersection
to enable collaborative perception, 2) multi-modality sen-
sor streams to facilitate multi-modality perception, 3) di-
verse well-annotated ground truth to support various down-
stream tasks including detection, tracking, and segmenta-
tion. We seek to inspire research on multi-agent multi-
modality multi-task perception, and our virtual dataset is
promising to promote the development of collaborative per-
ception before realistic datasets become widely available.

1. Introduction

The autonomous driving community has recently made
great efforts in dataset construction to support research in

this area, especially with perception and prediction [2–
4, 11, 30, 37, 42]. Current efforts center around increas-
ing the dataset scale [37], sensing modality [3], and down-
stream task diversity [2]. With the help of available datasets,
researchers have proposed and validated novel methods to
build more robust and efficient self-driving systems.

Notwithstanding the great progress in dataset construc-
tion, existing published datasets are all captured by sin-
gle – rather than multiple – vehicles. This presents a gap
in collaborative autonomous driving research. Vehicle-
to-everything (V2X), which denotes the collaboration be-
tween a vehicle and other entities such as vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I), seeks to help
self-driving vehicles see further, better and even see through
occlusion, thereby fundamentally improving safety. Ac-
cording to the estimation of U.S. NHTSA [1], there would
be a minimum of 13% reduction in traffic accidents if a V2V
system were implemented, which means 439,000 fewer
crashes every year.

To fill in the gap in current research, it is an impera-
tive to develop a well-established dataset for collaborative
autonomous driving settings. Given that building such a
dataset in the real world can be costly and laborious, we
build a virtual dataset to advance collaborative perception
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research. Specifically, we employ SUMO [20], a micro-
traffic simulation, to produce numerically-realistic traffic
flow, and CARLA [8], a widely-used open-source simu-
lator for autonomous driving research, to retrieve the sen-
sor streams from multiple vehicles located at the same in-
tersection. Besides, we mount sensors on the traffic lights
to empower the roadside to perceive the environment, and
the sensor streams of both the vehicles and the roadside in-
frastructure are synchronized to ensure smooth collabora-
tion. In addition, multi-modality sensor streams of different
entities are recorded to enable cross-modality perception.
Meanwhile, diverse annotations including bounding boxes,
vehicle trajectories, and pixel-wise as well as point-wise se-
mantics labels are provided to facilitate various downstream
tasks. Our dataset will be public and may inspire research
in multi-agent multi-modality multi-task perception before
realistic data becomes readily available to the community.
To summarize, contributions of this work are:

• We propose V2X-Sim, the first public collaborative
perception dataset in autonomous driving.

• We provide multi-modality data from multiple agents
to enable cross-modality perception.

• We provide diverse well-annotated ground truth to sup-
port various downstream tasks.

2. Related Work
Autonomous driving dataset. Since the pioneer dataset

KITTI [11] was released, the autonomous driving com-
munity has been trying to increase the dataset compre-
hensiveness in terms of driving scenarios, sensor modal-
ities, and data annotations. Regarding driving scenarios,
current datasets covered crowded urban scenes [30], ad-
verse weather conditions [32], night scenes [31], multiple
cities [3] to enrich the data distribution. As for sensor
modalities, nuScenes [3] collected data with Radar, RGB
camera, and LiDAR in a 360◦ viewpoint; WoodScape [42]
captured data with fisheye cameras; and A2D2 [12] pro-
vided extensive vehicle bus data including the steering
wheel angle, throttle, and braking. Regarding data anno-
tations, semantic labels in both images [7, 15, 29, 35] and
point cloud [2, 14] were provided to enable semantic seg-
mentation; 2D/3D box trajectories were offered [4, 9] to
facilitate tracking and prediction. In summary, existing
datasets generally emphasized the data comprehensiveness
in single-vehicle situations, but ignored the multi-vehicle
collaborative self-driving scenarios.

V2X system and dataset. By sharing information with
other vehicles or the roadside infrastructure, V2X mitigates
the shorting-comings of individual-vehicle perception and
planning such as the limited sensing range and frequent oc-
clusion. Previous research [18] developed an enhanced co-

operative microscopic traffic model in V2X scenarios, and
investigated the effect of V2X in traffic disturbance scenar-
ios. [19] proposed a multi-modal cooperative perception
system that provides see-through, lifted-seat, satellite and
all-around views to drivers. More recently, [39] incorpo-
rated deep learning into the V2V system: multiple intelli-
gent vehicles share the intermediate features output by the
neural network to promote the vehicle’s perception and pre-
diction capability. As for the dataset, [5, 23, 41] simulated
the V2V scenarios with different frames from KITTI [11].
Yet, they were unrealistic for not capturing the measure-
ments at the same time. Some other works used a pla-
toon strategy for data capture [6, 33], but they were biased
because the observations were highly correlated with each
other. [39] proposed V2V-Sim based on a high-quality Li-
DAR simulator [24]. Unfortunately, V2V-Sim does not in-
clude the V2I scenario and is not publicly available.

Synthetic dataset. Simulation environments can help
generate large-scale datasets with well-annotated ground
truth. Current literature on computer vision has exploited
synthetic datasets in a wide array of tasks, e.g., visual track-
ing [10, 28], semantic segmentation [22, 34], flow estima-
tion [27], visual surveillance [38], visual odometry [34],
3D perception [40], multi-view stereo [21], and egocen-
tric localization [17]. Synthetic datasets not only enable
large-scale training through free and precise annotations,
but also support the cutting-edge research before realistic
data becomes readily available. An example of the latter
application is the long-range sensor in [40]. Multiple prior
works have proven that pre-training a model using syn-
thetic data can improve the model’s performance on the real
data [16, 26, 26, 36]. To further optimize such usage of syn-
thetic data, domain adaptation techniques [13, 25] are uti-
lized. In this work, we use a fully open-sourced autonomous
driving simulator, CARLA [8], to generate V2X-Sim.

Sensor Description

V: 6 × RGB camera
I: 4 × RGB camera

Each vehicle is equipped with 6 cameras. Each
camera has a FoV of 70◦, except for the back cam-
era that has a FoV of 110◦. Each roadside has 4
cameras looking diagonally downward at 35◦ with
a 70◦ FoV. The image size is 1600×900.

V: 6 × Depth cam-
era

Each vehicle has 6 depth cameras with the same
setting as RGB cameras.

V: 6 × Semantic
camera

Each vehicle has 6 semantic segmentation cameras
with the same setting as RGB cameras.

V&I: 1 × BEV se-
mantic camera

Each vehicle and roadside has one BEV semantic
camera at the top, looking downward. Both the
raw images (semantic tags encoded in the red chan-
nel) and the converted colored images are provided.
The image size is 900×900.

V&I: 1 × LiDAR
and Semantic Li-
DAR

We attach one LiDAR and one semantic LiDAR
on top of the ego vehicle and the intersection cen-
ter. Specs: 32 channels, 70m max range, 250,000
points per second, 20 Hz rotation frequency.

Table 1: Sensor specification of vehicle (V) and roadside infrastructure (I)
in our V2X-Sim dataset. All the sensors are recorded at 5Hz.
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Figure 2: Example of multi-agent multi-modality perception. From top to bottom: RGB image, depth, semantic segmentation, and BEV semantic segmen-
tation. From left to right are respectively four vehicles’ recordings, except for the last row which appends an image of roadside in the last column.

Figure 3: Sensor layout and coordinate systems.

3. V2X-Sim Dataset

3.1. Sensor suite of vehicle and roadside

Multi-modality sensing data is essential for robust per-
ception. To ensure the comprehensiveness of our dataset,
we equip each vehicle with a sensor suite based on CARLA.
It is composed of RGB cameras, depth cameras, semantic
segmentation cameras, BEV semantic segmentation cam-
eras, LiDAR, and semantic LiDAR. Meanwhile, the road
infrastructure is equipped with RGB cameras, BEV seman-
tic segmentation cameras, LiDAR, and semantic LiDAR.

Sensor configuration. On both ego vehicles and road-
side infrastructure, the camera and LiDAR cover 360◦ hor-
izontally to enable full-view perception. Specifically, each
ego-vehicle carries six RGB cameras following nuScenes
configuration [3]; the roadside infrastructure is equipped

with four RGB cameras toward four directions at the cross-
road. Note that the BEV semantic segmentation camera is
based on orthogonal projection while the ego-vehicle se-
mantic segmentation camera uses perspective projection.
Table 1 summarizes the detailed sensor specification.

Sensor layout and coordinate system. The over-
all sensor layout and coordinate system is shown in
Fig. 3, and one example of multi-agent multi-modality
perception is shown in Fig. 2. On both ego-vehicle
and roadside infrastructure, LiDAR and semantic LiDAR,
RGB/depth/semantic cameras are placed at the same loca-
tion to obtain depth/semantics ground truth. The BEV se-
mantic segmentation camera shares the same x, y position
with LiDAR yet is placed higher to ensure a certain size of
field of view. As for the roadside infrastructure, sensors are
placed at random heights within a realistic range to enhance
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Figure 4: Visualizations of the bird’s eye view point cloud from different scenes. Gray denotes the point cloud captured by the roadside LiDAR. Each color
(except for gray) represents an vehicle, and the orange boxes denote the vehicles in the scene.

the diversity. Note that we invert the y-axis in CARLA and
use right-hand coordinate system following nuScenes [3].

Diverse annotations. To assist downstream tasks in-
cluding detection, tracking and semantic segmentation, we
provide various annotations such as 3D bounding boxes,
pixel-wise and point-wise semantic labels. Each box is de-
fined by the location of its center in x, y, z coordinates,
and its width, length, and height. Besides, there are to-
tally twenty-three categories such as pedestrian, building,
ground, etc. In addition, precise depth values are also pro-
vided for depth estimation.

3.2. CARLA-SUMO co-simulation

We consider it a realistic V2X scenario when multi-
ple vehicles with their own routes are simultaneously lo-
cated in the same geographical area, i.e., an intersection.
The roadside infrastructures are also empowered by sens-
ing capability. We use CARLA-SUMO co-simulation for
traffic flow simulation and data recording. Vehicles are
spawned in CARLA via SUMO, and managed by the Traf-
fic Manager. The script spawn npc sumo.py provided by
CARLA automatically generates a SUMO network in a cer-
tain town, and produces random routes to make vehicles
roam around. Hundreds of vehicles are spawned in differ-
ent towns (Town03, Town03 and Town05 that have cross
junctions and multiple lanes per direction), and we record

several log files, each with a length of five minutes. Then
we read out 100 scenes from the log files at different inter-
sections. Each scene includes a duration of 20 seconds, and
we select M(M = 2, 3, 4, 5) vehicles in a scene as the in-
telligent agents to share information with each other. See
Fig. 4 for several example scenes.

3.3. Downstream tasks

Our dataset can not only support individual perception
tasks such as 3D object detection, tracking, image-/point
cloud-based semantic segmentation, depth estimation, but
also enable collaborative perception like collaborative 3D
object detection, tracking, and collaborative BEV semantic
segmentation in urban driving scenes. We will provide a
benchmark for the collaborative perception algorithms.

4. Conclusion
We propose V2X-Sim, the first virtual collaborative per-

ception dataset in autonomous driving scenes based on
CARLA simulator. By providing both multi-agent multi-
modality sensor streams in realistic traffic flows and rich an-
notations, V2X-Sim can facilitate various perception tasks
especially collaborative perception before realistic datasets
become widely available. Our work seeks to inspire a va-
riety of relevant research areas including but not limited to
computer vision, multi-robot system, and deep learning.

4



References
[1] Vehicle-to-vehicle communication technology for light

vehicles. https : / / www.nhtsa.gov / sites /
nhtsa.gov / files / documents / v2v pria 12 -
12-16 clean.pdf, 2016. 1

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, C. Stachniss, and Juergen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9296–9306, 2019. 1, 2

[3] H. Caesar, Varun Bankiti, A. Lang, Sourabh Vora,
Venice Erin Liong, Q. Xu, A. Krishnan, Yu Pan, Giancarlo
Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset
for autonomous driving. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 11618–11628, 2020.
1, 2, 3, 4

[4] Ming-Fang Chang, J. Lambert, Patsorn Sangkloy, J. Singh,
Slawomir Bak, Andrew T. Hartnett, De Wang, P. Carr, S.
Lucey, D. Ramanan, and J. Hays. Argoverse: 3d track-
ing and forecasting with rich maps. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 8740–
8749, 2019. 1, 2

[5] Qi Chen, Sihai Tang, Q. Yang, and Song Fu. Cooper: Coop-
erative perception for connected autonomous vehicles based
on 3d point clouds. In IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), pages 514–524,
2019. 2

[6] Qi Chen, Ting Yuan, J. Hillenbrand, A. Gern, Tobias Roth,
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[21] A. Ley, R. Hänsch, and O. Hellwich. Syb3r: A realistic
synthetic benchmark for 3d reconstruction from images. In
ECCV, 2016. 2

[22] Yen-Cheng Liu, Junjiao Tian, Nathan Glaser, and Z. Kira.
When2com: Multi-agent perception via communication
graph grouping. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4105–4114, 2020. 2

[23] Y. Maalej, Sameh Sorour, A. Abdel-Rahim, and M. Guizani.
Vanets meet autonomous vehicles: A multimodal 3d envi-
ronment learning approach. In IEEE Global Communica-
tions Conference, pages 1–6, 2017. 2

[24] Sivabalan Manivasagam, Shenlong Wang, K. Wong,
Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Binh Yang,
Wei-Chiu Ma, and R. Urtasun. Lidarsim: Realistic lidar sim-
ulation by leveraging the real world. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages

5

https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/v2v_pria_12-12-16_clean.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/v2v_pria_12-12-16_clean.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/v2v_pria_12-12-16_clean.pdf


11164–11173, 2020. 2
[25] Francisco Massa, Bryan C. Russell, and Mathieu Aubry.

Deep exemplar 2d-3d detection by adapting from real to ren-
dered views. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6024–6033, 2016. 2

[26] Maxim Maximov, Kevin Galim, and L. Leal-Taix’e. Focus
on defocus: Bridging the synthetic to real domain gap for
depth estimation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1068–1077,
2020. 2

[27] N. Mayer, Eddy Ilg, Philip Häusser, P. Fischer, D. Cremers,
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